Advertisements
Advertisements
प्रश्न
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
उत्तर
To simplify, we will use distributive law as follows:
\[x\left( x + 4 \right) + 3x\left( 2 x^2 - 1 \right) + 4 x^2 + 4\]
\[ = x^2 + 4x + 6 x^3 - 3x + 4 x^2 + 4\]
\[ = x^2 + 4 x^2 + 4x - 3x + 6 x^3 + 4\]
\[ = 5 x^2 + x + 6 x^3 + 4\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply:
(x6 − y6) by (x2 + y2)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2