Advertisements
Advertisements
प्रश्न
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
उत्तर
To simplify, we will proceed as follows:
\[ \left( x - y \right)\left( x + y \right)\left( x^2 + y^2 \right)\left( x^4 + y^4 \right)\]
\[ = \left( x^2 - y^2 \right)\left( x^2 + y^2 \right)\left( x^4 + y^4 \right) \left[ \because\left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = \left( x^4 - y^4 \right)\left( x^4 + y^4 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = x^8 - x^8 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product:
−5a(7a − 2b)
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)
Multiply:
(12a + 17b) × 4c