Advertisements
Advertisements
प्रश्न
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
उत्तर
To simplify, we will proceed as follows:
\[ \left( x - y \right)\left( x + y \right)\left( x^2 + y^2 \right)\left( x^4 + y^4 \right)\]
\[ = \left( x^2 - y^2 \right)\left( x^2 + y^2 \right)\left( x^4 + y^4 \right) \left[ \because\left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = \left( x^4 - y^4 \right)\left( x^4 + y^4 \right) \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
\[ = x^8 - x^8 \left[ \because \left( a + b \right)\left( a - b \right) = a^2 - b^2 \right]\]
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product: \[- \frac{4}{27}xyz\left( \frac{9}{2} x^2 yz - \frac{3}{4}xy z^2 \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Simplify:
(x3 − 2x2 + 3x − 4) (x −1) − (2x − 3)(x2 − x + 1)