Advertisements
Advertisements
प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e.,
\[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 7ab \right) \times \left( - 5a b^2 c \right) \times \left( 6ab c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a \times a \times a \right) \times \left( b \times b^2 \times b \right) \times \left( c \times c^2 \right)\]
\[ = \left\{ 7 \times \left( - 5 \right) \times 6 \right\} \times \left( a^{1 + 1 + 1} \right) \times \left( b^{1 + 2 + 1} \right) \times \left( c^{1 + 2} \right)\]
\[ = - 210 a^3 b^4 c^3\]
Thus, the answer is \[- 210 a^3 b^4 c^3\] .
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{1}{27} a^2 b^2 \right) \times \left( \frac{9}{2} a^3 b^2 c^2 \right)\]
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Find the following product:
−5a(7a − 2b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Simplify: a2(2a − 1) + 3a + a3 − 8
Simplify : (4m − 8n)2 + (7m + 8n)2
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0
Multiply:
23xy2 × 4yz2