Advertisements
Advertisements
प्रश्न
Find the following product:
−5a(7a − 2b)
उत्तर
To find the product, we will use distributive law as follows:
\[- 5a\left( 7a - 2b \right)\]
\[ = \left( - 5a \right) \times 7a + \left( - 5a \right) \times \left( - 2b \right)\]
\[ = \left( - 5 \times 7 \right) \times \left( a \times a \right) + \left( - 5 \times \left( - 2 \right) \right) \times \left( a \times b \right)\]
\[ = \left( - 35 \right) \times \left( a^{1 + 1} \right) + \left( 10 \right) \times \left( a \times b \right)\]
\[ = - 35 a^2 + 10ab\]
Thus, the answer is \[- 35 a^2 + 10ab\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(2x + 8) by (x − 3)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0