Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n} \text { and } \left( a^m \right)^n = a^{mn}\]
We have:
\[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 x^4 \right) \times \left( x^6 \right) \times \left( 2^2 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^4 \times x^6 \times x^2 \right)\]
\[ = \left( 5 \times 2^2 \right) \times \left( x^{4 + 6 + 2} \right)\]
\[ = 20 x^{12} \]
\[\therefore\] \[\left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 = 20 x^{12} \]
Substituting x = 1 in LHS, we get:
\[\text { LHS } = \left( 5 x^4 \right) \times \left( x^2 \right)^3 \times \left( 2x \right)^2 \]
\[ = \left( 5 \times 1^4 \right) \times \left( 1^2 \right)^3 \times \left( 2 \times 1 \right)^2 \]
\[ = \left( 5 \times 1 \right) \times \left( 1^6 \right) \times \left( 2 \right)^2 \]
\[ = 5 \times 1 \times 4\]
\[ = 20\]
Put x =1 in RHS, we get:
\[RHS = 20 x^{12} \]
\[ = 20 \times \left( 1 \right)^{12} \]
\[ = 20 \times 1\]
\[ = 20\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct.
Thus, the answer is \[20 x^{12}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Find the following product:
−11a(3a + 2b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product:
1.5x(10x2y − 100xy2)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
[−3d + (−7f)] by (5d + f)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Show that: (3x + 7)2 − 84x = (3x − 7)2