Advertisements
Advertisements
प्रश्न
Multiply:
[−3d + (−7f)] by (5d + f)
उत्तर
To multiply, we will use distributive law as follows:
\[\left[ - 3d + \left( - 7f \right) \right]\left( 5d + f \right)\]
\[ = \left( - 3d \right)\left( 5d + f \right) + \left( - 7f \right)\left( 5d + f \right)\]
\[ = \left( - 15 d^2 - 3df \right) + \left( - 35df - 7 f^2 \right)\]
\[ = - 15 d^2 - 3df - 35df - 7 f^2 \]
\[ = - 15 d^2 - 38df - 7 f^2 \]
Thus, the answer is \[- 15 d^2 - 38df - 7 f^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
Multiply \[- \frac{3}{2} x^2 y^3 by (2x - y)\] and verify the answer for x = 1 and y = 2.
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
(2xy + 3y2) (3y2 − 2)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2