Advertisements
Advertisements
प्रश्न
Express each of the following product as a monomials and verify the result in each case for x = 1:
(x2)3 × (2x) × (−4x) × (5)
उत्तर
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n} \text { and } \left( a^m \right)^n = a^{mn}\]
We have:
\[\left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left( x^6 \right) \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left\{ 2 \times \left( - 4 \right) \times 5 \right\} \times \left( x^6 \times x \times x \right)\]
\[ = \left\{ 2 \times \left( - 4 \right) \times 5 \right\} \times \left( x^{6 + 1 + 1} \right)\]
\[ = - 40 x^8 \]
\[\therefore\] \[\left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5 = - 40 x^8\]
Substituting x = 1 in LHS, we get:
\[\text { LHS } { = \left( x^2 \right)^3 \times \left( 2x \right) \times \left( - 4x \right) \times 5\]
\[ = \left( 1^2 \right)^3 \times \left( 2 \times 1 \right) \times \left( - 4 \times 1 \right) \times 5\]
\[ = 1^6 \times 2 \times \left( - 4 \right) \times 5\]
\[ = 1 \times 2 \times \left( - 4 \right) \times 5\]
\[ = - 40\]
Putting x = 1 in RHS, we get:
\[\text { RHS } = - 40 x^8 \]
\[ = - 40 \left( 1 \right)^8 \]
\[ = - 40 \times 1\]
\[ = - 40\]
\[\because\] LHS = RHS for x = 1; therefore, the result is correct
Thus, the answer is \[- 40 x^8\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Evaluate (−8x2y6) × (−20xy) for x = 2.5 and y = 1.
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2