Advertisements
Advertisements
प्रश्न
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
उत्तर
LHS
\[ = \left( 4pq + 3q \right)^2 - \left( 4pq - 3q \right)^2 \]
\[ = 4\left( 4pq \right)\left( 3q \right) \left[ \because \left( a + b \right)^2 - \left( a + b \right)^2 = 4ab \right]\]
\[ = 48p q^2 \]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[( - 7xy) \times \left( \frac{1}{4} x^2 yz \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Find the following product:
4.1xy(1.1x − y)
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (m2 − n2m)2 + 2m3n2
Multiply:
(12a + 17b) × 4c
Multiply:
(4x + 5y) × (9x + 7y)