Advertisements
Advertisements
प्रश्न
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
उत्तर
To multiply, we will use distributive law as follows:
\[\left( \frac{3}{5}x + \frac{1}{2}y \right)\left( \frac{5}{6}x + 4y \right)\]
\[ = \frac{3}{5}x\left( \frac{5}{6}x + 4y \right) + \frac{1}{2}y\left( \frac{5}{6}x + 4y \right)\]
\[ = \frac{1}{2} x^2 + \frac{12}{5}xy + \frac{5}{12}xy + 2 y^2 \]
\[ = \frac{1}{2} x^2 + \left( \frac{144 + 25}{60} \right)xy + 2 y^2 \]
\[ = \frac{1}{2} x^2 + \frac{169}{60}xy + 2 y^2\]
Thus, the answer is \[\frac{1}{2} x^2 + \frac{169}{60}xy + 2 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find each of the following product:
(2.3xy) × (0.1x) × (0.16)
Find the following product:
−5a(7a − 2b)
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)