Advertisements
Advertisements
प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x \times x \times x^2 \right) \times \left( y^2 \times y \right) \times \left( z^4 \times z \right)\]
\[ = \left( 0 . 5 \times \frac{1}{3} \times 24 \right) \times \left( x^{1 + 1 + 2} \right) \times \left( y^{2 + 1} \right) \times \left( z^{4 + 1} \right)\]
\[ = 4 x^4 y^3 z^5\]
Thus, the answer is \[4 x^4 y^3 z^5\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Find the following product:
−11a(3a + 2b)
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Multiply:
(5x + 3) by (7x + 2)
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
x2(x + 2y) (x − 3y)
Show that: (a − b)(a + b) + (b − c)(b + c) + (c − a)( c + a) = 0