Advertisements
Advertisements
प्रश्न
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e. \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
\[ = \left\{ \frac{4}{3} \times \left( - 5 \right) \times \frac{1}{3} \right\} \times \left( u^2 \times u \times u \right) \times \left( v \times v \times v^2 \right) \times \left( w \times w^2 \times w \right)\]
\[ = \left\{ \frac{4}{3} \times \left( - 5 \right) \times \frac{1}{3} \right\} \times \left( u^{2 + 1 + 1} \right) \times \left( v^{1 + 1 + 2} \right) \times \left( w^{1 + 2 + 1} \right)\]
\[ = - \frac{20}{9} u^4 v^4 w^4\]
Thus, the answer is \[- \frac{20}{9} u^4 v^4 w^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the value of (5x6) × (−1.5x2y3) × (−12xy2) when x = 1, y = 0.5.
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
Find the following product:
−5a(7a − 2b)
Find the following product:
4.1xy(1.1x − y)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Multiply:
(5x + 3) by (7x + 2)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (m2 − n2m)2 + 2m3n2