Advertisements
Advertisements
प्रश्न
Evaluate (2.3a5b2) × (1.2a2b2) when a = 1 and b = 0.5.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( 2 . 3 a^5 b^2 \right) \times \left( 1 . 2 a^2 b^2 \right)\]
\[ = \left( 2 . 3 \times 1 . 2 \right) \times \left( a^5 \times a^2 \right) \times \left( b^2 \times b^2 \right)\]
\[ = \left( 2 . 3 \times 1 . 2 \right) \times \left( a^{5 + 2} \right) \times \left( b^{2 + 2} \right)\]
\[ = 2 . 76 a^7 b^4\]
\[\therefore\] \[\left( 2 . 3 a^5 b^2 \right) \times \left( 1 . 2 a^2 b^2 \right) = 2 . 76 a^7 b^4\]
Substituting a =1 and b = 0.5 in the result, we get:
\[2 . 76 a^7 b^4 \]
\[ = 2 . 76 \left( 1 \right)^7 \left( 0 . 5 \right)^4 \]
\[ = 2 . 76 \times 1 \times 0 . 0625\]
\[ = 0 . 1725\]
Thus, the answer is \[0 . 1725\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(5x − 3)(x + 2) − (2x + 5)(4x − 3)
Multiply:
16xy × 18xy