Advertisements
Advertisements
प्रश्न
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^2 \times x \times x^2 \right) \times \left( y \times y^2 \times y^2 \right)\]
\[ = \left\{ \frac{3}{5} \times \left( - \frac{15}{4} \right) \times \frac{7}{9} \right\} \times \left( x^{2 + 1 + 2} \right) \times \left( y^{1 + 2 + 2} \right)\]
\[ = - \frac{7}{4} x^5 y^5\]
\[\therefore\] \[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right) = - \frac{7}{4} x^5 y^5\].
Substituting x = 2 and y = \[-\] 1 in the result, we get:
\[- \frac{7}{4} x^5 y^5 \]
\[ = - \frac{7}{4} \left( 2 \right)^5 \left( - 1 \right)^5 \]
\[ = \left( - \frac{7}{4} \right) \times 32 \times \left( - 1 \right)\]
\[ = 56\]
Thus, the answer is 56.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Multiply:
16xy × 18xy