Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{4}{3}a( a^2 + b^2 - 3 c^2 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{4}{3}a\left( a^2 + b^2 - 3 c^2 \right)\]
\[ = \frac{4}{3}a \times a^2 + \frac{4}{3}a \times b^2 - \frac{4}{3}a \times 3 c^2 \]
\[ = \frac{4}{3} a^{1 + 2} + \frac{4}{3}a b^2 - 4a c^2 \]
\[ = \frac{4}{3} a^3 + \frac{4}{3}a b^2 - 4a c^2\]
Thus, the answer is \[\frac{4}{3} a^3 + \frac{4}{3}a b^2 - 4a c^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Simplify: 2x2(x3 − x) − 3x(x4 + 2x) − 2(x4 − 3x2)
Simplify: a(b − c) − b(c − a) − c(a − b)
Multiply:
(7x + y) by (x + 5y)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
[−3d + (−7f)] by (5d + f)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Show that: (3x + 7)2 − 84x = (3x − 7)2
Solve the following equation.
6x − 1 = 3x + 8