Advertisements
Advertisements
प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, i.e., \[a^m \times a^n = a^{m + n}\].
We have:
\[\left( - \frac{24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
\[ = \left\{ \left( - \frac{24}{25} \right) \times \left( - \frac{15}{16} \right) \right\} \times \left( x^3 \times x \right) \times \left( z \times z^2 \right) \times y\]
\[ = \left\{ \left( - \frac{24}{25} \right) \times \left( - \frac{15}{16} \right) \right\} \times \left( x^{3 + 1} \right) \times \left( z^{1 + 2} \right) \times y\]
\[= \frac{9}{10} x^4 y z^3\]
Thus, the answer is \[\frac{9}{10} x^4 y z^3\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
5x2 × 4x3
Find each of the following product: \[\left( \frac{4}{3} u^2 vw \right) \times \left( - 5uv w^2 \right) \times \left( \frac{1}{3} v^2 wu \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Multiply:
(a − 1) by (0.1a2 + 3)
Multiply:
(x2 + y2) by (3a + 2b)
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
Simplify:
x2(x + 2y) (x − 3y)
Simplify : (4m − 8n)2 + (7m + 8n)2
Simplify : (m2 − n2m)2 + 2m3n2