Advertisements
Advertisements
प्रश्न
Multiply:
(2x2y2 − 5xy2) by (x2 − y2)
उत्तर
To multiply, we will use distributive law as follows:
\[\left( 2 x^2 y^2 - 5x y^2 \right)\left( x^2 - y^2 \right)\]
\[ = 2 x^2 y^2 \left( x^2 - y^2 \right) - 5x y^2 \left( x^2 - y^2 \right)\]
\[ = 2 x^4 y^2 - 2 x^2 y^4 - 5 x^3 y^2 + 5x y^4 \]
Thus, the answer is \[2 x^4 y^2 - 2 x^2 y^4 - 5 x^3 y^2 + 5x y^4\] .
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find each of the following product:
(−4x2) × (−6xy2) × (−3yz2)
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Find the following product and verify the result for x = − 1, y = − 2: \[\left( \frac{1}{3}x - \frac{y^2}{5} \right)\left( \frac{1}{3}x + \frac{y^2}{5} \right)\]
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Multiply:
(12a + 17b) × 4c