Advertisements
Advertisements
प्रश्न
Write down the product of −8x2y6 and −20xy. Verify the product for x = 2.5, y = 1.
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., \[a^m \times a^n = a^{m + n}\]
We have:
\[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^2 \times x \right) \times \left( y^6 \times y \right)\]
\[ = \left\{ \left( - 8 \right) \times \left( - 20 \right) \right\} \times \left( x^{2 + 1} \right) \times \left( y^{6 + 1} \right)\]
\[ = - 160 x^3 y^7 \]
\[\therefore\] \[\left( - 8 x^2 y^6 \right) \times \left( - 20xy \right) = - 160 x^3 y^7\]
Substituting x = 2.5 and y = 1 in LHS, we get:
\[\text { LHS } = \left( - 8 x^2 y^6 \right) \times \left( - 20xy \right)\]
\[ = \left\{ - 8 \left( 2 . 5 \right)^2 \left( 1 \right)^6 \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left\{ - 8\left( 6 . 25 \right)\left( 1 \right) \right\} \times \left\{ - 20\left( 2 . 5 \right)\left( 1 \right) \right\}\]
\[ = \left( - 50 \right) \times \left( - 50 \right)\]
\[ = 2500\]
Substituting x = 2.5 and y = 1 in RHS, we get:
\[\text { RHS } = - 160 x^3 y^7 \]
\[ = - 160 \left( 2 . 5 \right)^3 \left( 1 \right)^7 \]
\[ = - 160\left( 15 . 625 \right) \times 1\]
\[ = - 2500\]
Because LHS is equal to RHS, the result is correct.
Thus, the answer is \[- 160 x^3 y^7\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( 0 . 5x \right) \times \left( \frac{1}{3}x y^2 z^4 \right) \times \left( 24 x^2 yz \right)\]
Find the following product:
2a3(3a + 5b)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
[−3d + (−7f)] by (5d + f)
Simplify:
x2(x − y) y2(x + 2y)
Simplify:
(5x + 3)(x − 1)(3x − 2)
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2