Advertisements
Advertisements
प्रश्न
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
उत्तर
First multiply the expressions and then substitute the values for the variables.
To multiply algebric experssions use the commutative and the associative laws along with the law of indices, \[a^m \times a^n = a^{m + n}\].
We have,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right)\]
\[ = \left( 3 . 2 \times 2 . 1 \right) \times \left( x^6 \times x^2 \right) \times \left( y^3 \times y^2 \right)\]
\[ = 6 . 72 x^8 y^5 \]
Hence,
\[\left( 3 . 2 x^6 y^3 \right) \times \left( 2 . 1 x^2 y^2 \right) = 6 . 72 x^8 y^5\]
Now, substitute 1 for x and 0.5 for y in the result.
\[6 . 72 x^8 y^5 \]
\[ = 6 . 72 \left( 1 \right)^8 \left( 0 . 5 \right)^5 \]
\[ = 6 . 72 \times 1 \times 0 . 03125\]
\[ = 0 . 21\]
Hence, the answer is \[0 . 21\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{7}{9}a b^2 \right) \times \left( \frac{15}{7}a c^2 b \right) \times \left( - \frac{3}{5} a^2 c \right)\]
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Find the following product:
2a3(3a + 5b)
Find the following product:
0.1y(0.1x5 + 0.1y)
Simplify: a(b − c) + b(c − a) + c(a − b)
Simplify: x2(x2 + 1) − x3(x + 1) − x(x3 − x)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Solve the following equation.
5(x + 1) = 74