Advertisements
Advertisements
Question
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Solution
LHS
\[ = \left( 4pq + 3q \right)^2 - \left( 4pq - 3q \right)^2 \]
\[ = 4\left( 4pq \right)\left( 3q \right) \left[ \because \left( a + b \right)^2 - \left( a + b \right)^2 = 4ab \right]\]
\[ = 48p q^2 \]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
RELATED QUESTIONS
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product:
−11a(3a + 2b)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Multiply:
(5x + 3) by (7x + 2)
Multiply:
(3x2 + y2) by (2x2 + 3y2)
Multiply:
(x6 − y6) by (x2 + y2)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Find the following product and verify the result for x = − 1, y = − 2:
(x2y − 1) (3 − 2x2y)
Multiply:
(12a + 17b) × 4c