Advertisements
Advertisements
Question
Show that: \[\left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
Solution
\[\text { LHS } = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2mn\]
\[ = \left( \frac{4m}{3} - \frac{3n}{4} \right)^2 + 2 \times \frac{4m}{3} \times \frac{3n}{4}\]
\[ = \left( \frac{4m}{3} \right)^2 + \left( \frac{3n}{4} \right)^2 \left[ \because \left( a - b \right)^2 + 2ab = a^2 + b^2 \right]\]
\[ = \frac{16 m^2}{9} + \frac{9 n^2}{16}\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following when x = 2, y = −1.
\[\left( \frac{3}{5} x^2 y \right) \times \left( - \frac{15}{4}x y^2 \right) \times \left( \frac{7}{9} x^2 y^2 \right)\]
Find the following product:
−11y2(3y + 7)
Find the following product:
4.1xy(1.1x − y)
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: a(b − c) − b(c − a) − c(a − b)
Simplify: \[\frac{3}{2} x^2 ( x^2 - 1) + \frac{1}{4} x^2 ( x^2 + x) - \frac{3}{4}x( x^3 - 1)\]
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2
Solve:
(3x + 2y)(7x − 8y)