Advertisements
Advertisements
प्रश्न
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
उत्तर
To find the product, we will use the distributive law in the following way:
\[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
\[ = \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{3}{2}xy z^2 \right) \right\} - \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{9}{4}x y^2 z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x \times x \right) \times \left( y \times y \right) \times \left( z \times z^2 \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x \times x \right) \times \left( y \times y^2 \right) \times \left( z \times z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = \left\{ \left( - \frac{8^4}{{27}_9} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8^2}{{27}_3} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = - \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\]
Thus, the answer is \[- \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\frac{1}{4}xy \times \frac{2}{3} x^2 y z^2\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(3x) × (4x) × (−5x)
Find the following product:
4.1xy(1.1x − y)
Find the product 24x2 (1 − 2x) and evaluate its value for x = 3.
Find the product −3y(xy + y2) and find its value for x = 4 and y = 5.
Multiply: \[\left( \frac{3}{5}x + \frac{1}{2}y \right) by \left( \frac{5}{6}x + 4y \right)\]
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(3x − 2)(2x − 3) + (5x − 3)(x + 1)
Simplify : (2x − 1)(2x + 1)(4x2 + 1)(16x4 + 1)