Advertisements
Advertisements
Question
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Solution
To find the product, we will use the distributive law in the following way:
\[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
\[ = \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{3}{2}xy z^2 \right) \right\} - \left\{ \left( - \frac{8}{27}xyz \right)\left( \frac{9}{4}x y^2 z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x \times x \right) \times \left( y \times y \right) \times \left( z \times z^2 \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x \times x \right) \times \left( y \times y^2 \right) \times \left( z \times z^3 \right) \right\}\]
\[ = \left\{ \left( - \frac{8}{27} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8}{27} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = \left\{ \left( - \frac{8^4}{{27}_9} \times \frac{3}{2} \right)\left( x^{1 + 1} y^{1 + 1} z^{1 + 2} \right) \right\} - \left\{ \left( - \frac{8^2}{{27}_3} \times \frac{9}{4} \right)\left( x^{1 + 1} y^{1 + 2} z^{1 + 3} \right) \right\}\]
\[ = - \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\]
Thus, the answer is \[- \frac{4}{9} x^2 y^2 z^3 + \frac{2}{3} x^2 y^3 z^4\].
APPEARS IN
RELATED QUESTIONS
Find each of the following product:
\[\left( - \frac{2}{7} a^4 \right) \times \left( - \frac{3}{4} a^2 b \right) \times \left( - \frac{14}{5} b^2 \right)\]
Evaluate each of the following when x = 2, y = −1.
\[(2xy) \times \left( \frac{x^2 y}{4} \right) \times \left( x^2 \right) \times \left( y^2 \right)\]
Simplify:
(2x2 + 3x − 5)(3x2 − 5x + 4)
Simplify : (x − y)(x + y) (x2 + y2)(x4 + y2)
Simplify : (m2 − n2m)2 + 2m3n2
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
Multiply:
16xy × 18xy
Multiply:
23xy2 × 4yz2
Multiply:
(4x + 5y) × (9x + 7y)
Solve the following equation.
2(x − 4) = 4x + 2