Advertisements
Advertisements
प्रश्न
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2
उत्तर
\[\text { LHS } = \left( 9a - 5b \right)^2 + 180ab\]
\[ = \left( 9a - 5b \right)^2 + 4 \times 9a \times 5b\]
\[ = \left( 9a + 5b \right)^2 \left[ \because \left( a - b \right)^2 + 4ab = \left( a + b \right)^2 \right]\]
= RHS
Because LHS is equal to RHS, the given equation is verified.
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
\[\left( - \frac{7}{5}x y^2 z \right) \times \left( \frac{13}{3} x^2 y z^2 \right)\]
Find the following product:
2a3(3a + 5b)
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Find the following product:
250.5xy \[\left( xz + \frac{y}{10} \right)\]
Simplify: 2a2 + 3a(1 − 2a3) + a(a + 1)
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(x2 − 3x + 2)(5x − 2) − (3x2 + 4x − 5)(2x − 1)
Simplify : (2.5p − 1.5q)2 − (1.5p − 2.5q)2
Multiply:
(4x + 5y) × (9x + 7y)