Advertisements
Advertisements
प्रश्न
Find the following product:
−11y2(3y + 7)
उत्तर
To find the product, we will use distributive law as follows:
\[- 11 y^2 \left( 3y + 7 \right)\]
\[ = \left( - 11 y^2 \right) \times 3y + \left( - 11 y^2 \right) \times 7\]
\[ = \left( - 11 \times 3 \right)\left( y^2 \times y \right) + \left( - 11 \times 7 \right) \times \left( y^2 \right)\]
\[ = \left( - 33 \right)\left( y^{2 + 1} \right) + \left( - 77 \right) \times \left( y^2 \right)\]
\[ = - 33 y^3 - 77 y^2\]
Thus, the answer is \[- 33 y^3 - 77 y^2\] .
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{4}{3}p q^2 \right) \times \left( - \frac{1}{4} p^2 r \right) \times \left( 16 p^2 q^2 r^2 \right)\]
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product:
1.5x(10x2y − 100xy2)
Simplify: 3a2 + 2(a + 2) − 3a(2a + 1)
Simplify: a2b(a − b2) + ab2(4ab − 2a2) − a3b(1 − 2b)
Multiply:
(2x + 8) by (x − 3)
Multiply:
(x2 + y2) by (3a + 2b)
Simplify:
(x2 − 2y2) (x + 4y) x2y2
Simplify:
(5x + 3)(x − 1)(3x − 2)
Show that: (4pq + 3q)2 − (4pq − 3q)2 = 48pq2