Advertisements
Advertisements
प्रश्न
Find each of the following product:
(−5xy) × (−3x2yz)
उत्तर
To multiply algebraic expressions, we use commutative and associative laws along with the law of indices, \[a^m \times a^n = a^{m + n}\],wherever applicable.
We have:
\[\left( - 5xy \right) \times \left( - 3 x^2 yz \right)\]
\[ = \left\{ \left( - 5 \right) \times \left( - 3 \right) \right\} \times \left( x \times x^2 \right) \times \left( y \times y \right) \times z\]
\[ = 15 \times \left( x^{1 + 2} \right) \times \left( y^{1 + 1} \right) \times z\]
\[ = 15 x^3 y^2 z\]
Thus, the answer is \[15 x^3 y^2 z\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(7ab) × (−5ab2c) × (6abc2)
Find the following product:
0.1y(0.1x5 + 0.1y)
Find the following product: \[\left( - \frac{7}{4}a b^2 c - \frac{6}{25} a^2 c^2 \right)( - 50 a^2 b^2 c^2 )\]
Find the following product: \[- \frac{8}{27}xyz\left( \frac{3}{2}xy z^2 - \frac{9}{4}x y^2 z^3 \right)\]
Find the following product: \[\frac{7}{5} x^2 y\left( \frac{3}{5}x y^2 + \frac{2}{5}x \right)\]
Simplify: x3y(x2 − 2x) + 2xy(x3 − x4)
Simplify: a2(2a − 1) + 3a + a3 − 8
Multiply:
(7x + y) by (x + 5y)
Multiply:
(0.8a − 0.5b) by (1.5a − 3b)
Show that: (9a − 5b)2 + 180ab = (9a + 5b)2