Advertisements
Advertisements
प्रश्न
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
उत्तर
To find the product, we will use distributive law as follows:
\[\frac{6x}{5}\left( x^3 + y^3 \right)\]
\[ = \frac{6x}{5} \times x^3 + \frac{6x}{5} \times y^3 \]
\[ = \frac{6}{5} \times \left( x \times x^3 \right) + \frac{6}{5} \times \left( x \times y^3 \right)\]
\[ = \frac{6}{5} \times \left( x^{1 + 3} \right) + \frac{6}{5} \times \left( x \times y^3 \right)\]
\[ = \frac{6 x^4}{5} + \frac{6x y^3}{5}\]
Thus, the answer is \[\frac{6 x^4}{5} + \frac{6x y^3}{5}\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(4x2) × (−3x) × \[\left( \frac{4}{5} x^3 \right)\]
Find the following product:
2a3(3a + 5b)
Multiply: \[\left( - \frac{a}{7} + \frac{a^2}{9} \right)by\left( \frac{b}{2} - \frac{b^2}{3} \right)\].
Multiply:
(3x2y − 5xy2) by \[\left( \frac{1}{5} x^2 + \frac{1}{3} y^2 \right)\].
Simplify:
x2(x + 2y) (x − 3y)
Simplify:
a2b2(a + 2b)(3a + b)
Simplify:
(5 − x)(6 − 5x)( 2 − x)
Multiply:
(4x + 5y) × (9x + 7y)
Solve the following equation.
2(x − 4) = 4x + 2