Advertisements
Advertisements
प्रश्न
Simplify:
(3x + 2y)(4x + 3y) − (2x − y)(7x − 3y)
उत्तर
To simplify, we will proceed as follows:
\[\left( 3x + 2y \right)\left( 4x + 3y \right) - \left( 2x - y \right)\left( 7x - 3y \right)\]
\[ = \left[ \left( 3x + 2y \right)\left( 4x + 3y \right) \right] - \left[ \left( 2x - y \right)\left( 7x - 3y \right) \right]\]
\[= \left[ 3x\left( 4x + 3y \right) + 2y\left( 4x + 3y \right) \right] - \left[ 2x\left( 7x - 3y \right) - y\left( 7x - 3y \right) \right]\] (Distributive law)
\[= 12 x^2 + 9xy + 8xy + 6 y^2 - \left[ 14 x^2 - 6xy - 7xy + 3 y^2 \right]\]
\[ = 12 x^2 + 9xy + 8xy + 6 y^2 - 14 x^2 + 6xy + 7xy - 3 y^2\]
\[= 12 x^2 - 14 x^2 + 9xy + 8xy + 6xy + 7xy + 6 y^2 - 3 y^2\] (Rearranging)
\[= - 2 x^2 + 30xy + 3 y^2\] (Combining like terms)
Thus, the answer is \[- 2 x^2 + 30xy + 3 y^2\].
APPEARS IN
संबंधित प्रश्न
Find each of the following product: \[\left( \frac{- 24}{25} x^3 z \right) \times \left( - \frac{15}{16}x z^2 y \right)\]
Find each of the following product:
(−5a) × (−10a2) × (−2a3)
Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
Evaluate (3.2x6y3) × (2.1x2y2) when x = 1 and y = 0.5.
Find the following product: \[\frac{6x}{5}( x^3 + y^3 )\]
Simplify: x(x + 4) + 3x(2x2 − 1) + 4x2 + 4
Simplify: a2b(a3 − a + 1) − ab(a4 − 2a2 + 2a) − b (a3 − a2 − 1)
Multiply:
(2x2 − 1) by (4x3 + 5x2)
Simplify:
(x3 − 2x2 + 5x − 7)(2x − 3)
Simplify:
(5x + 3)(x − 1)(3x − 2)