Advertisements
Advertisements
प्रश्न
Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]
उत्तर
To multiply the expressions, we will use the distributive law in the following way:
\[\left( \frac{x}{7} + \frac{x^2}{2} \right)\left( \frac{2}{5} + \frac{9x}{4} \right)\]
\[ = \frac{x}{7}\left( \frac{2}{5} + \frac{9x}{4} \right) + \frac{x^2}{2}\left( \frac{2}{5} + \frac{9x}{4} \right)\]
\[ = \frac{2x}{35} + \frac{9 x^2}{28} + \frac{x^2}{5} + \frac{9 x^3}{8}\]
\[ = \frac{2x}{35} + \left( \frac{45 + 28}{140} \right) x^2 + \frac{9 x^3}{8}\]
\[ = \frac{2x}{35} + \frac{73 x^2}{140} + \frac{9 x^2}{8}\]
Thus, the answer is \[\frac{2x}{35} + \frac{73 x^2}{140} + \frac{9 x^3}{8}\].
APPEARS IN
संबंधित प्रश्न
Subtract: 5a2 - 7ab + 5b2 from 3ab - 2a2 -2b2
Add the following algebraic expression:
\[\frac{3}{2}a - \frac{5}{4}b + \frac{2}{5}c, \frac{2}{3}a - \frac{7}{2}b + \frac{7}{2}c, \frac{5}{3}a + \frac{5}{2}b - \frac{5}{4}c\]
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add:
17a2b2 + 16c; 28c − 28a2b2
The additive inverse of −37xyz is ___________
The expressions 8x + 3y and 7x + 2y cannot be added
The sum of –7pq and 2pq is ______.
Add:
3a(a – b + c), 2b(a – b + c)
What should be added to x3 + 3x2y + 3xy2 + y3 to get x3 + y3?