Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
उत्तर
Let us consider the following equation:
\[x + \frac{1}{x} = 12\]
Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 12 \right)^2 = 144\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 144\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 144 [ (a + b )^2 = a^2 + b^2 + 2ab]\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 144\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 142\] (Subtracting 2 from both sides)
Now
\[\left( x - \frac{1}{x} \right)^2 = x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} [(a - b )^2 = a^2 + b^2 - 2ab]\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2}\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 142 - 2 ( \because x^2 + \frac{1}{x^2} = 142)\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 140 \]
\[ \Rightarrow x - \frac{1}{x} = \pm \sqrt{140} \left( \text { Taking square root } \right)\]
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
Subtract:
− 5xy from 12xy
Subtract:
2a − b from 3a − 5b
Add:
9p + 16q; 13p + 2q
Add:
17a2b2 + 16c; 28c − 28a2b2
Find the sum of the following expressions
mn + t, 2mn – 2t, – 3t + 3mn
Find the expression to be added with 5a – 3b – 2c to get a – 4b – 2c?
On simplification `(3x + 3)/3` = ______.
What should be added to 3pq + 5p2q2 + p3 to get p3 + 2p2q2 + 4pq?
At age of 2 years, a cat or a dog is considered 24 “human” years old. Each year, after age 2 is equivalent to 4 “human” years. Fill in the expression [24 + `square` (a – 2)] so that it represents the age of a cat or dog in human years. Also, you need to determine for what ‘a’ stands for. Copy the chart and use your expression to complete it.
Age | [24 + `square` (a – 2)] | Age (Human Years) |
2 | ||
3 | ||
4 | ||
5 | ||
6 |