Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
उत्तर
Let us consider the following equation: \[x + \frac{1}{x} = 9\] Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 9 \right)^2 = 81\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 81\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 79\] (Subtracting 2 from both sides)
Now, squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 79 \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 6241\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 6239\]
APPEARS IN
संबंधित प्रश्न
Add the following:
2p2q2 − 3pq + 4, 5 + 7pq − 3p2q2
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Subtract 4p2q − 3pq + 5pq2 − 8p + 7q − 10 from 18 − 3p − 11q + 5pq − 2pq2 + 5p2q
Simplify combining like terms: 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
From the sum of 3x - y + 11 and - y - 11, subtract 3x - y - 11.
Add the following algebraic expression: \[\frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3}, \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3}, \frac{3}{2} x^2 - \frac{5}{2}x - 2\]
If x is a natural number, then x + 1 is its predecessor
Find the expression to be added with 5a – 3b – 2c to get a – 4b – 2c?
Add:
7a2bc, –3abc2, 3a2bc, 2abc2
Add the following expressions:
ab + bc + ca and – bc – ca – ab