Advertisements
Advertisements
Question
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
Solution
Let us consider the following equation: \[x + \frac{1}{x} = 9\] Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 9 \right)^2 = 81\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 81\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 79\] (Subtracting 2 from both sides)
Now, squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 79 \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 6241\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 6239\]
APPEARS IN
RELATED QUESTIONS
Add the following:
ab − bc, bc − ca, ca − ab
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Add: 14x + 10y - 12xy - 13, 18 - 7x - 10y + 8xy, 4xy
Add: x2 - y2 - 1 , y2 - 1 - x2, 1- x2 - y2
Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....
Add:
17a2b2 + 16c; 28c − 28a2b2
Simplify: p + p + 2 + p + 3 + p – 4 – p – 5 + p + 10
Add:
9ax + 3by – cz, –5by + ax + 3cz
The expression 13 + 90 is a ______.
Add the following expressions:
t – t2 – t3 – 14; 15t3 + 13 + 9t – 8t2; 12t2 – 19 – 24t and 4t – 9t2 + 19t3