Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
उत्तर
Let us consider the following equation: \[x + \frac{1}{x} = 9\] Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 9 \right)^2 = 81\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 81\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 81\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 79\] (Subtracting 2 from both sides)
Now, squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 79 \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 6241\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 6241\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 6239\]
APPEARS IN
संबंधित प्रश्न
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add: -7mn + 5, 12mn + 2, 9mn - 8, -2mn - 3
From the sum of 4 + 3x and 5 - 4x + 2x2, subtract the sum of 3x2 - 5x and -x2 + 2x + 5.
Subtract:
2a − b from 3a − 5b
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
The addition of – 7b and 2b is ____________
The number of scarfs of length half metre that can be made from y metres of cloth is ______.
Add the following expressions:
p2qr + pq2r + pqr2 and – 3pq2r – 2pqr2
How much is y4 – 12y2 + y + 14 greater than 17y3 + 34y2 – 51y + 68?