Advertisements
Advertisements
प्रश्न
Find the value of the following expression: 81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and \[y = \frac{3}{4}\]
उत्तर
Let us consider the following expression: \[81 x^2 + 16 y^2 - 72xy\]
Now
\[81 x^2 + 16 y^2 - 72xy = \left( 9x - 4y \right)^2\] (Using identity \[\left( a + b \right)^2 = a^2 - 2ab + b^2\])
\[\Rightarrow 81 x^2 + 16 y^2 - 72xy = \left[ 9\left( \frac{2}{3} \right) - 4\left( \frac{3}{4} \right) \right]^2 (\text { Substituting } x = \frac{2}{3}\text { and y } = \frac{3}{4})\]
\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = \left[ 6 - 3 \right]^2 \]
\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = 3^2 \]
\[ \Rightarrow 81 x^2 + 16 y^2 - 72xy = 9\]
APPEARS IN
संबंधित प्रश्न
Factorize `x^2 + 12/35 x + 1/35`
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
8x3 -125y3 +180xy + 216
Evaluate: (3x - 1)(4x3 - 2x2 + 6x - 3)
Evaluate: (a2 + b2 + c2 - ab - bc - ca)(a + b + c)
Evaluate:
(i) (a + b)(a - b)
(ii) (a2 + b2)(a + b)(a - b); using the result of (i).
(iii) (a4 + b4)(a2 + b2)(a + b)(a - b); using the result of (ii).
Multiply: (2x + 3y)(2x - 3y)
Which of the following expressions has the value 37?
Write the variables, constant and terms of the following expression
29x + 13y
If x = 2 and y = 3, then find the value of the following expressions
x + y