Advertisements
Advertisements
प्रश्न
Find the value of the following expression: 64x2 + 81y2 + 144xy, when x = 11 and \[y = \frac{4}{3}\]
उत्तर
Let us consider the following expression: \[64 x^2 + 81 y^2 + 144xy\]
Now \[64 x^2 + 81 y^2 + 144xy = \left( 8x + 9y \right)^2\] (Using identity \[\left( a + b \right)^2 = a^2 + 2ab + b^2\])
\[\Rightarrow 64 x^2 + 81 y^2 + 144xy = \left[ 8\left( 11 \right) + 9\left( \frac{4}{3} \right) \right]^2 (\text { Substituting x = 11 and y } = \frac{4}{3})\]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = \left[ 88 + 12 \right]^2 \]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = {100}^2 \]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = 10000\]
APPEARS IN
संबंधित प्रश्न
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
Factorize x( x - 2)( x - 4) + 4x - 8
`2sqrt2a^3 + 3sqrt3b^3 + c^3 - 3 sqrt6abc`
8x3 -125y3 +180xy + 216
Write the value of 483 − 303 − 183.
Write the number of the term of the following polynomial.
ax – by + y x z
Multiply: (6x - 2y)(3x - y)
Divide: 8a2 + 4a - 60 by 2a - 5
Divide: x3 − 6x2 + 11x − 6 by x2 − 4x + 3
The largest number of the three consecutive numbers is x + 1, then the smallest number is ________