Advertisements
Advertisements
Question
Find the value of the following expression: 64x2 + 81y2 + 144xy, when x = 11 and \[y = \frac{4}{3}\]
Solution
Let us consider the following expression: \[64 x^2 + 81 y^2 + 144xy\]
Now \[64 x^2 + 81 y^2 + 144xy = \left( 8x + 9y \right)^2\] (Using identity \[\left( a + b \right)^2 = a^2 + 2ab + b^2\])
\[\Rightarrow 64 x^2 + 81 y^2 + 144xy = \left[ 8\left( 11 \right) + 9\left( \frac{4}{3} \right) \right]^2 (\text { Substituting x = 11 and y } = \frac{4}{3})\]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = \left[ 88 + 12 \right]^2 \]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = {100}^2 \]
\[ \Rightarrow 64 x^2 + 81 y^2 + 144xy = 10000\]
APPEARS IN
RELATED QUESTIONS
125 + 8x3 - 27 y3 + 90xy
27x3 − y3 − z3 − 9xyz
Multiply: x2 + y2 + z2 − xy + xz + yz by x + y − z
Evaluate: (8 - 12x + 7x2 - 6x3)(5 - 2x)
Divide: 9a4b - 15a3b2 + 12a2b3 by - 3a2b
Divide: 6x2 + 5x - 6 by 2x + 3
Divide: 9x2 - 24xy + 16y2 by 3x- 4y
Express the following as an algebraic expression:
The product of x and y divided by m.
Write the coefficient of x2 and x in the following polynomials
`4 + 2/5x^2 - 3x`
The variable in the expression 16x – 7 is __________