हिंदी

If X + 1 X = 12 , Find the Value of X − 1 X . - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x + \frac{1}{x} = 12,\]  find the value of \[x - \frac{1}{x} .\]

संक्षेप में उत्तर

उत्तर

Let us consider the following equation:

\[x + \frac{1}{x} = 12\]

Squaring both sides, we get:

\[\left( x + \frac{1}{x} \right)^2 = \left( 12 \right)^2 = 144\]

\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 144\]

\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 144 [ (a + b )^2 = a^2 + b^2 + 2ab]\]

\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 144\]

\[\Rightarrow x^2 + \frac{1}{x^2} = 142\]                 (Subtracting 2 from both sides)

Now

\[\left( x - \frac{1}{x} \right)^2 = x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} [(a - b )^2 = a^2 + b^2 - 2ab]\]

\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2}\]

\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 142 - 2 ( \because x^2 + \frac{1}{x^2} = 142)\]

\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 140 \]

\[ \Rightarrow x - \frac{1}{x} = \pm \sqrt{140} \left( \text { Taking square root } \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Algebraic Expressions and Identities - Exercise 6.6 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 6 Algebraic Expressions and Identities
Exercise 6.6 | Q 15 | पृष्ठ ४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×