Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
उत्तर
Let us consider the following equation:
\[x + \frac{1}{x} = 12\]
Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 12 \right)^2 = 144\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 144\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 144 [ (a + b )^2 = a^2 + b^2 + 2ab]\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 144\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 142\] (Subtracting 2 from both sides)
Now
\[\left( x - \frac{1}{x} \right)^2 = x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2} [(a - b )^2 = a^2 + b^2 - 2ab]\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = x^2 - 2 + \frac{1}{x^2}\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 142 - 2 ( \because x^2 + \frac{1}{x^2} = 142)\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 140 \]
\[ \Rightarrow x - \frac{1}{x} = \pm \sqrt{140} \left( \text { Taking square root } \right)\]
APPEARS IN
संबंधित प्रश्न
Subtract 4p2q − 3pq + 5pq2 − 8p + 7q − 10 from 18 − 3p − 11q + 5pq − 2pq2 + 5p2q
Add: 5m - 7n, 3n - 4m + 2, 2m - 3mn - 5
Subtract: (a - b) from (a + b)
What should be subtracted from 2a + 8b + 10 to get - 3a + 7b + 16?
What should be taken away from 3x2 - 4y2 + 5xy + 20 to obtain - x2 - y2 + 6xy + 20?
Add:
13x2 − 12y2; 6x2 − 8y2
Add:
17a2b2 + 16c; 28c − 28a2b2
The additive inverse of −37xyz is ___________
Simplify: p + p + 2 + p + 3 + p – 4 – p – 5 + p + 10
Add:
5x2 – 3xy + 4y2 – 9, 7y2 + 5xy – 2x2 + 13