Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
उत्तर
Let us consider the following equation: \[x - \frac{1}{x} = 3\]
Squaring both sides, we get:
\[\left( x - \frac{1}{x} \right)^2 = \left( 3 \right)^2 = 9\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 + \frac{1}{x^2} = 9\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 11\] (Adding 2 to both sides)
Squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 11 \right)^2 = 121\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 121\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 119\]
APPEARS IN
संबंधित प्रश्न
Add the following:
l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl
Simplify combining like terms: - z2 + 13z2 − 5z + 7z3 − 15z
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add:
17a2b2 + 16c; 28c − 28a2b2
Find the sum of the following expressions
5xyz – 3xy, 3zxy – 5yx
Add:
7a2bc, –3abc2, 3a2bc, 2abc2
Add:
5x2 – 3xy + 4y2 – 9, 7y2 + 5xy – 2x2 + 13
Add:
2p4 – 3p3 + p2 – 5p + 7, –3p4 – 7p3 – 3p2 – p – 12
Add:
3a(a – b + c), 2b(a – b + c)
Add the following expressions:
x3 – x2y – xy2 – y3 and x3 – 2x2y + 3xy2 + 4y