Advertisements
Advertisements
Question
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
Solution
Let us consider the following equation: \[x - \frac{1}{x} = 3\]
Squaring both sides, we get:
\[\left( x - \frac{1}{x} \right)^2 = \left( 3 \right)^2 = 9\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 + \frac{1}{x^2} = 9\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 11\] (Adding 2 to both sides)
Squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 11 \right)^2 = 121\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 121\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 119\]
APPEARS IN
RELATED QUESTIONS
Add: 3p2q2 - 4pq + 5, - 10p2q2, 15 + 9pq + 7p2q2
Add: x2 - y2 - 1 , y2 - 1 - x2, 1- x2 - y2
Add the following algebraic expression: \[\frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3}, \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3}, \frac{3}{2} x^2 - \frac{5}{2}x - 2\]
Subtract:
\[\frac{3}{2}x - \frac{5}{4}y - \frac{7}{2}z \text { from }\frac{2}{3}x + \frac{3}{2}y - \frac{4}{3}z\]
Subtract:
\[x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \text { from } \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy\]
Subtract the sum of 2x − x2 + 5 and − 4x − 3 + 7x2 from 5.
Solve the following equation.
`4"x"+1/2=9/2`
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q
Add the following expressions:
`5/8p^4 + 2p^2 + 5/8; 1/8 - 17p + 9/8p^2` and `p^5 - p^3 + 7`
Each symbol given below represents an algebraic expression:
= 2x2 + 3y,
= 5x2 + 3x,
= 8y2 – 3x2 + 2x + 3y
The symbols are then represented in the expression:
Find the expression which is represented by the above symbols.