English

If X − 1 X = 3 , Find the Values of X 2 + 1 X 2 and X 4 + 1 X 4 . - Mathematics

Advertisements
Advertisements

Question

If \[x - \frac{1}{x} = 3,\]  find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]

Answer in Brief

Solution

Let us consider the following equation: \[x - \frac{1}{x} = 3\]

Squaring both sides, we get:

\[\left( x - \frac{1}{x} \right)^2 = \left( 3 \right)^2 = 9\]

\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 9\]

\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 9\]

\[ \Rightarrow x^2 - 2 + \frac{1}{x^2} = 9\]

\[\Rightarrow x^2 + \frac{1}{x^2} = 11\]            (Adding 2 to both sides)

Squaring both sides again, we get:

\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 11 \right)^2 = 121\]

\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 121\]

\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 121\]

\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 121\]

\[\Rightarrow x^4 + \frac{1}{x^4} = 119\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Algebraic Expressions and Identities - Exercise 6.6 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 6 Algebraic Expressions and Identities
Exercise 6.6 | Q 8 | Page 43
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×