Advertisements
Advertisements
Question
Add the following algebraic expression: \[\frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3}, \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3}, \frac{3}{2} x^2 - \frac{5}{2}x - 2\]
Solution
To add, we proceed as follows:
\[\left( \frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3} \right) + \left( \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3} \right) + \left( \frac{3}{2} x^2 - \frac{5}{2}x - 2 \right)\]
\[ = \frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3} + \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3} + \frac{3}{2} x^2 - \frac{5}{2}x - 2\]
\[ = \frac{7}{2} x^3 + \frac{3}{2} x^3 - \frac{1}{2} x^2 + \frac{7}{4} x^2 + \frac{3}{2} x^2 - x - \frac{5}{2}x + \frac{5}{3} + \frac{1}{3} - 2 ( \text { Collecting like terms })\]
\[ = 5 x^3 + \frac{11}{4} x^2 - \frac{7}{2}x ( \text { Combining like terms })\]
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: p − (p − q) − q − (q − p)
Add: 3mn, − 5mn, 8mn, −4mn
Add: 5m - 7n, 3n - 4m + 2, 2m - 3mn - 5
If \[x + \frac{1}{x} = 20,\]find the value of \[x^2 + \frac{1}{x^2} .\].
Add:
−3y2 + 10y − 16; 7y2 + 8
Solve the following equation.
`4"x"+1/2=9/2`
Add: −9y, 11y, 2y
Simplify: n + (m + 1) + (n + 2) + (m + 3) + (n + 4) + (m + 5)
Add:
7a2bc, –3abc2, 3a2bc, 2abc2
Add:
3a(2b + 5c), 3c(2a + 2b)