Advertisements
Advertisements
Question
If \[x + \frac{1}{x} = 20,\]find the value of \[x^2 + \frac{1}{x^2} .\].
Solution
Let us consider the following equation: \[x + \frac{1}{x} = 20\]
Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 20 \right)^2 = 400\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 400\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 400 [(a + b )^2 = a^2 + b^2 + 2ab]\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 400\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 398\] (Subtracting 2 from both sides)
Thus, the answer is 398.
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: - z2 + 13z2 − 5z + 7z3 − 15z
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add: 3mn, − 5mn, 8mn, −4mn
Subtract: a (b - 5) from b (5 - a)
Subtract: 5a2 - 7ab + 5b2 from 3ab - 2a2 -2b2
Subtract: 4pq - 5q2 - 3p2 from 5p2 + 3q2 - pq
Add the following algebraic expression:
3a2b, − 4a2b, 9a2b
Add the following algebraic expression:
\[\frac{2}{3}a, \frac{3}{5}a, - \frac{6}{5}a\]
Add:
9p + 16q; 13p + 2q
Find the sum of the following expressions
a + 5b + 7c, 2a + 10b + 9c