Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 20,\]find the value of \[x^2 + \frac{1}{x^2} .\].
उत्तर
Let us consider the following equation: \[x + \frac{1}{x} = 20\]
Squaring both sides, we get:
\[\left( x + \frac{1}{x} \right)^2 = \left( 20 \right)^2 = 400\]
\[ \Rightarrow \left( x + \frac{1}{x} \right)^2 = 400\]
\[ \Rightarrow x^2 + 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 400 [(a + b )^2 = a^2 + b^2 + 2ab]\]
\[ \Rightarrow x^2 + 2 + \frac{1}{x^2} = 400\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 398\] (Subtracting 2 from both sides)
Thus, the answer is 398.
APPEARS IN
संबंधित प्रश्न
Add the following:
ab − bc, bc − ca, ca − ab
Simplify combining like terms: 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
Add: a + b - 3, b - a + 3, a - b + 3
Subtract:
− 5xy from 12xy
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
The addition of – 7b and 2b is ____________
Add: 8x, 3x
Find the sum of the following expressions
7p + 6q, 5p – q, q + 16p
Find the sum of the following expressions
mn + t, 2mn – 2t, – 3t + 3mn
Each symbol given below represents an algebraic expression:
= 2x2 + 3y,
= 5x2 + 3x,
= 8y2 – 3x2 + 2x + 3y
The symbols are then represented in the expression:
Find the expression which is represented by the above symbols.