Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
उत्तर
Let us consider the following equation: \[x - \frac{1}{x} = 3\]
Squaring both sides, we get:
\[\left( x - \frac{1}{x} \right)^2 = \left( 3 \right)^2 = 9\]
\[ \Rightarrow \left( x - \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 \times x \times \frac{1}{x} + \left( \frac{1}{x} \right)^2 = 9\]
\[ \Rightarrow x^2 - 2 + \frac{1}{x^2} = 9\]
\[\Rightarrow x^2 + \frac{1}{x^2} = 11\] (Adding 2 to both sides)
Squaring both sides again, we get:
\[\left( x^2 + \frac{1}{x^2} \right)^2 = \left( 11 \right)^2 = 121\]
\[ \Rightarrow \left( x^2 + \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow \left( x^2 \right)^2 + 2\left( x^2 \right)\left( \frac{1}{x^2} \right) + \left( \frac{1}{x^2} \right)^2 = 121\]
\[ \Rightarrow x^4 + 2 + \frac{1}{x^4} = 121\]
\[\Rightarrow x^4 + \frac{1}{x^4} = 119\]
APPEARS IN
संबंधित प्रश्न
Add: -7mn + 5, 12mn + 2, 9mn - 8, -2mn - 3
Subtract:
2a − b from 3a − 5b
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add:
−3y2 + 10y − 16; 7y2 + 8
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q
Add the following expressions:
p2qr + pq2r + pqr2 and – 3pq2r – 2pqr2
Add the following expressions:
a2 + 3ab – bc, b2 + 3bc – ca and c2 + 3ca – ab
Add the following expressions:
`5/8p^4 + 2p^2 + 5/8; 1/8 - 17p + 9/8p^2` and `p^5 - p^3 + 7`