Advertisements
Advertisements
प्रश्न
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
उत्तर
Let first add the expressions
\[x - 3y + 2z \text { and } - 4x + 9y - 11z\] We get:
\[\left( x - 3y + 2z \right) + \left( - 4x + 9y - 11z \right)\]
\[= x - 3y + 2z - 4x + 9y - 11z\]
\[= x - 4x - 3y + 9y + 2z - 11z\] (Collecting like terms)
\[= - 3x + 6y - 9z\] (Combining like terms)
Now, subtracting the expression
\[3x - 4y - 7z\] from the above sum; we get:
\[\left( - 3x + 6y - 9z \right) - \left( 3x - 4y - 7z \right)\]
\[ = - 3x + 6y - 9z - 3x + 4y + 7z\]
\[= - 3x - 3x + 6y + 4y - 9z + 7z\] (Collecting like terms)
\[= - 6x + 10y - 2z\] (Combining like terms)
Thus, the answer is \[- 6x + 10y - 2z\].
APPEARS IN
संबंधित प्रश्न
Add the following:
ab − bc, bc − ca, ca − ab
Add the following:
a − b + ab, b − c + bc, c − a + ac
Add: -7mn + 5, 12mn + 2, 9mn - 8, -2mn - 3
Subtract: - 5y2 from y2
Subtract:
\[x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \text { from } \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy\]
Add:
2a + 6b + 8c; 16a + 13c + 18b
Find the sum of the following expressions
7p + 6q, 5p – q, q + 16p
The sum of –7pq and 2pq is ______.
Each symbol given below represents an algebraic expression:
= 2x2 + 3y,
= 5x2 + 3x,
= 8y2 – 3x2 + 2x + 3y
The symbols are then represented in the expression:
Find the expression which is represented by the above symbols.