Advertisements
Advertisements
प्रश्न
Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....
उत्तर
We have to subtract the sum of (3l \[-\] 4m \[-\] 7n2) and (2l + 3m \[-\] 4n2) from the sum of (9l + 2m \[-\] 3n2) and (\[-\] 3l + m + 4n2)
\[\left\{ \left( 9l + 2m - 3 n^2 \right) + \left( - 3l + m + 4 n^2 \right) \right\} - \left\{ \left( 3l - 4m - 7 n^2 \right) + \left( 2l + 3m - 4 n^2 \right) \right\}\]
\[= \left( 9l - 3l + 2m + m - 3 n^2 + 4 n^2 \right) - \left( 3l + 2l - 4m + 3m - 7 n^2 - 4 n^2 \right)\]
\[= \left( 6l + 3m + n^2 \right) - \left( 5l - m - 11 n^2 \right)\] (Combining like terms inside the parentheses)
\[= 6l + 3m + n^2 - 5l + m + 11 n^2\]
\[= 6l - 5l + 3m + m + n^2 + 11 n^2\] (Collecting like terms)
\[= l + 4m + 12 n^2\] (Combining like terms)
Thus, the required solution is \[l + 4m + 12 n^2\].
APPEARS IN
संबंधित प्रश्न
Add the following:
ab − bc, bc − ca, ca − ab
Add: 3p2q2 - 4pq + 5, - 10p2q2, 15 + 9pq + 7p2q2
Subtract: - 5y2 from y2
Subtract:
\[\frac{3}{2}x - \frac{5}{4}y - \frac{7}{2}z \text { from }\frac{2}{3}x + \frac{3}{2}y - \frac{4}{3}z\]
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
Find the sum of the following expressions
7p + 6q, 5p – q, q + 16p
The sum of –7pq and 2pq is ______.
Multiply the following:
(ab + c), (ab + c)
Add the following expressions:
a2 + 3ab – bc, b2 + 3bc – ca and c2 + 3ca – ab