Advertisements
Advertisements
प्रश्न
Subtract 3x − 4y − 7z from the sum of x − 3y + 2z and − 4x + 9y − 11z.
उत्तर
Let first add the expressions
\[x - 3y + 2z \text { and } - 4x + 9y - 11z\] We get:
\[\left( x - 3y + 2z \right) + \left( - 4x + 9y - 11z \right)\]
\[= x - 3y + 2z - 4x + 9y - 11z\]
\[= x - 4x - 3y + 9y + 2z - 11z\] (Collecting like terms)
\[= - 3x + 6y - 9z\] (Combining like terms)
Now, subtracting the expression
\[3x - 4y - 7z\] from the above sum; we get:
\[\left( - 3x + 6y - 9z \right) - \left( 3x - 4y - 7z \right)\]
\[ = - 3x + 6y - 9z - 3x + 4y + 7z\]
\[= - 3x - 3x + 6y + 4y - 9z + 7z\] (Collecting like terms)
\[= - 6x + 10y - 2z\] (Combining like terms)
Thus, the answer is \[- 6x + 10y - 2z\].
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 3a - 2b - ab - (a - b + ab) + 3ab + b - a
Subtract: -x2 + 10x - 5 from 5x - 10
Subtract: 5a2 - 7ab + 5b2 from 3ab - 2a2 -2b2
What should be subtracted from 2a + 8b + 10 to get - 3a + 7b + 16?
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
Add:
2a + 6b + 8c; 16a + 13c + 18b
Solve:
(6a − 5b − 8c) + (15b + 2a − 5c)
The additive inverse of −37xyz is ___________
On simplification `(3x + 3)/3` = ______.
Add:
7a2bc, –3abc2, 3a2bc, 2abc2