Advertisements
Advertisements
Question
Add the following expressions:
`5/8p^4 + 2p^2 + 5/8; 1/8 - 17p + 9/8p^2` and `p^5 - p^3 + 7`
Solution
We have, `(5/8p^4 + 2p^2 + 5/8) + (1/8 - 17p + 9/8p^2) + (p^5 - p^3 + 7)`
= `5/8p^4 + 2p^2 + 5/8 + 1/8 - 17p + 9/8p^2 + p^5 - p^3 + 7`
On combining the like terms,
= `p^5 + 5/8p^4 - p^3 + (2 + 9/8)p^2 - 17p + (5/8 + 1/8 + 7)`
= `p^5 + 5/8p^4 - p^3 + ((16 + 9)/8)p^2 - 17p + ((5 + 1 + 56)/8)`
= `p^5 + 5/8p^4 - p^3 + 25/8p^2 - 17p + 62/8`
= `p^5 + 5/8p^4 - p^3 + 25/8p^2 - 17p + 31/4`
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
What should be taken away from 3x2 - 4y2 + 5xy + 20 to obtain - x2 - y2 + 6xy + 20?
Subtract:
2x3 − 4x2 + 3x + 5 from 4x3 + x2 + x + 6
Subtract:
\[\frac{ab}{7} - \frac{35}{3}bc + \frac{6}{5}ac \text { from } \frac{3}{5}bc - \frac{4}{5}ac\]
If \[x - \frac{1}{x} = 3,\] find the values of \[x^2 + \frac{1}{x^2}\] and \[x^4 + \frac{1}{x^4} .\]
Add:
13x2 − 12y2; 6x2 − 8y2
Find the sum of the following expressions
mn + t, 2mn – 2t, – 3t + 3mn
Find the sum of the following expressions
5xyz – 3xy, 3zxy – 5yx
Simplify: n + (m + 1) + (n + 2) + (m + 3) + (n + 4) + (m + 5)
Add:
2p4 – 3p3 + p2 – 5p + 7, –3p4 – 7p3 – 3p2 – p – 12