Advertisements
Advertisements
Question
What should be taken away from 3x2 - 4y2 + 5xy + 20 to obtain - x2 - y2 + 6xy + 20?
Solution
Let p be the required term.
(3x2 - 4y2 + 5xy + 20) - p = - x2 - y2 + 6xy + 20
p = (3x2 - 4y2 + 5xy + 20) - (- x2 - y2 + 6xy + 20)
= 3x2 - 4y2 + 5xy + 20 + x2 + y2 - 6xy - 20
= 3x2 + x2 - 4y2 + y2 + 5xy - 6xy + 20 - 20
= 4x2 - 3y2 - xy
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: - z2 + 13z2 − 5z + 7z3 − 15z
Simplify combining like terms: p − (p − q) − q − (q − p)
Add the following algebraic expression:
\[\frac{2}{3}a, \frac{3}{5}a, - \frac{6}{5}a\]
Add the following algebraic expression: \[\frac{7}{2} x^3 - \frac{1}{2} x^2 + \frac{5}{3}, \frac{3}{2} x^3 + \frac{7}{4} x^2 - x + \frac{1}{3}, \frac{3}{2} x^2 - \frac{5}{2}x - 2\]
Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....
Add:
17a2b2 + 16c; 28c − 28a2b2
Solve the following equation.
10 = 2y + 5
Find the sum of the following expressions
7p + 6q, 5p – q, q + 16p
Add the following expressions:
x3y2 + x2y3 + 3y4 and x4 + 3x2y3 + 4y4