Advertisements
Advertisements
प्रश्न
What should be taken away from 3x2 - 4y2 + 5xy + 20 to obtain - x2 - y2 + 6xy + 20?
उत्तर
Let p be the required term.
(3x2 - 4y2 + 5xy + 20) - p = - x2 - y2 + 6xy + 20
p = (3x2 - 4y2 + 5xy + 20) - (- x2 - y2 + 6xy + 20)
= 3x2 - 4y2 + 5xy + 20 + x2 + y2 - 6xy - 20
= 3x2 + x2 - 4y2 + y2 + 5xy - 6xy + 20 - 20
= 4x2 - 3y2 - xy
APPEARS IN
संबंधित प्रश्न
Add: -7mn + 5, 12mn + 2, 9mn - 8, -2mn - 3
Add: x2 - y2 - 1 , y2 - 1 - x2, 1- x2 - y2
Subtract: 6xy from − 12xy
Subtract the sum of 3l − 4m − 7n2 and 2l + 3m − 4n2 from the sum of 9l + 2m − 3n2 and − 3l + m + 4n2 .....
If \[x + \frac{1}{x} = 9,\] find the value of \[x^4 + \frac{1}{x^4} .\]
Add:
17a2b2 + 16c; 28c − 28a2b2
The additive inverse of −37xyz is ___________
Multiply the following:
(ab + c), (ab + c)
Add the following expressions:
x3 – x2y – xy2 – y3 and x3 – 2x2y + 3xy2 + 4y
What should be added to 3pq + 5p2q2 + p3 to get p3 + 2p2q2 + 4pq?