Advertisements
Advertisements
Question
Add:
2p4 – 3p3 + p2 – 5p + 7, –3p4 – 7p3 – 3p2 – p – 12
Solution
We have,
(2p4 – 3p3 + p2 – 5p + 7) + (–3p4 – 7p3 – 3p2 – p – 12)
= 2p4 – 3p3 + p2 – 5p + 7 – 3p4 – 7p3 – 3p2 – p – 12
= (2p4 – 3p4) + (–3p3 – 7p3) + (p2 – 3p2) + (–5p – p) + (7 – 12) ...[Grouping like terms]
= – p4 + (–10p3) + (–2p2) + (–6p) + (–5)
= – p4 – 10p3 – 2p2 – 6p – 5
APPEARS IN
RELATED QUESTIONS
Simplify combining like terms: 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
Add: a + b - 3, b - a + 3, a - b + 3
Subtract: 5a2 - 7ab + 5b2 from 3ab - 2a2 -2b2
Subtract:
\[x^2 y - \frac{4}{5}x y^2 + \frac{4}{3}xy \text { from } \frac{2}{3} x^2 y + \frac{3}{2}x y^2 - \frac{1}{3}xy\]
Multiply: \[\left( \frac{x}{7} + \frac{x^2}{2} \right)by\left( \frac{2}{5} + \frac{9x}{4} \right)\]
The additive inverse of −37xyz is ___________
The expressions 8x + 3y and 7x + 2y cannot be added
Add:
3a(2b + 5c), 3c(2a + 2b)
Add the following expressions:
ab + bc + ca and – bc – ca – ab
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q